Last Updated: Vankeerbergen, Bernadette Chantal 11/03/2016

Term Information

Effective Term Autumn 2017

General Information

Course Bulletin Listing/Subject Area Biology

Fiscal Unit/Academic Org Introductory Biology - D0326

College/Academic Group Arts and Sciences Level/Career Undergraduate

Course Number/Catalog 1114E

Biological Sciences: Form, Function, Diversity, and Ecology Course Title

Transcript Abbreviation

Exploration of biology and biological principles; evolution and speciation, diversity in structure, function, **Course Description**

behavior, and ecology among prokaryotes and eukaryotes. A broad introduction to biology comprises both Biology 1113E and 1114E.

Semester Credit Hours/Units Fixed: 4

Offering Information

14 Week, 12 Week, 8 Week, 7 Week, 6 Week **Length Of Course**

Flexibly Scheduled Course Never Does any section of this course have a distance No

education component?

Letter Grade **Grading Basis**

Repeatable

Course Components Laboratory, Lecture

Grade Roster Component Lecture Credit Available by Exam No **Admission Condition Course** No Off Campus Never **Campus of Offering** Lima

Prerequisites and Exclusions

Honors standing; and Math 1149, 1150, or above, or Math Placement Level L. Prereq or concur: Chem 1210 (121), 1610, or 1910H (201H), or permission of course coordinator. Prerequisites/Corequisites

Exclusions Not open to students with credit for 116 or 116H.

Cross-Listings

Cross-Listings

Subject/CIP Code

Subject/CIP Code 26.0101

Subsidy Level Baccalaureate Course

Freshman, Sophomore, Junior, Senior **Intended Rank**

Requirement/Elective Designation

Required for this unit's degrees, majors, and/or minors General Education course:

Biological Science

The course is an elective (for this or other units) or is a service course for other units

Course Details

Course goals or learning objectives/outcomes

- Successful students will be able to: Explain the mechanisms of microevolution.
- Successful students will be able to: Use concepts associated with microevolution and macroevolution to explain
 patterns of speciation and extinction.
- Successful students will be able to: Explain mechanisms of sexual selection and the evolution of social behavior.
- Successful students will be able to: Describe methods used to infer evolutionary relationships.
- Successful students will be able to: Explain the relationship between evolutionary hypotheses and the biological classification system.
- Successful students will be able to: Use the geologic time scale to identify when major biological evolutionary events occurred.
- Successful students will be able to: Characterize the biological domains and kingdoms.
- Successful students will be able to: Describe the major features of and evolutionary relationships within the Kingdoms Fungi, Plantae, and Animalia.
- Successful students will be able to: Describe the major groups of animals in terms of their body plan, embryology, and symmetry.
- Successful students will be able to: Explain ecological phenomena related to populations and communities in terms
 of basic mathematical models.
- Successful students will be able to: Trace chemicals and energy through an ecosystem to explain human and global impacts of perturbations.
- Successful students will be able to: Describe the interrelationship between biodiversity and community interactions, such as such as predation, competition, and symbiosis.
- Successful students will be able to: Understand the scientific evidence for climate change.
- Successful students will be able to: Use online search engines to explore primary scientific literature.
- Successful students will be able to: Summarize scientific research.

Content Topic List

- Mechanisms of Evolution
- Diversity of Life
- Prokaryotes & Eukaryotes
- Plant Form & Function
- Fungi
- Animal Form & Function
- Behavior
- Ecology

Last Updated: Vankeerbergen,Bernadette Chantal 11/03/2016

Attachments

• cover letter.docx: Cover Letter

(Cover Letter. Owner: Misicka, Matthew Alan)

• 2016_Spring_BIOLOGY_1114_NorrisR.docx: SAMPLE 1114 Syllabus

(Syllabus. Owner: Misicka, Matthew Alan)

• 2017_Autumn_BIOLOGY_1114E.docx: PROPOSED 1114E Syllabus

(Syllabus. Owner: Misicka, Matthew Alan)

Comments

Workflow Information

Status	User(s)	Date/Time	Step
Submitted	Misicka, Matthew Alan	10/31/2016 12:55 PM	Submitted for Approval
Approved	Misicka, Matthew Alan	10/31/2016 12:56 PM	Unit Approval
Approved	Fink,Steven Scott	11/01/2016 01:12 PM	College Approval
Nolen,Dawn Vankeerbergen,Bernade te Chantal Hanlin,Deborah Kay Jenkins,Mary Ellen Bigle Hogle,Danielle Nicole		11/01/2016 01:12 PM	ASCCAO Approval
Pending Approval	Toohey,Meagan Elizabeth	11/03/2016 03:08 PM	Ad-Hoc Approval

4240 Campus Drive Lima, OH 45804

20 October 2016

Re: Establishment of Honors Embedded BIO 1113E and BIO 1114E on the Lima Campus

Dear Curriculum Committee,

We are requesting that embedded honors sections be allowed for BIO 1113E and BIO 1114E on the Lima Campus. The primary rationale for the change is that we would like more flexibility in scheduling, given the change in course demand we are observing. That is, as more students are admitted with College Credit + and AP credit, demand for some of our introductory courses are projected to decrease. We foresee the possibility, for example, of not having enough demand to run separate honors sections in BIO 1113 and BIO 1114, in which case the ability to embed honors students would allow us to maintain our honors offerings.

The embedded honors courses will provide opportunities for embedded instruction, honors-only instruction, field trips, and honors-led group activities with their peers (peer-led teaching). We envision honors embedded courses to consist of an embedded lecture with a unique lab section just for honors students. BIO 1113E and 1114E have an additional hour of instruction which will allow for expanded course content and unique honors experiences.

Attached are detailed descriptions of the course details including the syllabi. Thank you for considering the addition of this honors embedded course.

Sincerely.

Dr. Jacqueline Augustine

Associate Professor

augustine.63@osu.edu, 419-995-8237

1) Enhanced student/faculty interaction

The course will offer students enhanced student/faculty interaction through an additional hour of classtime that would include just honors students and faculty.

Course set-up:

Embedded: 1-hour lectures, 3 times per week Honors-only lab section: 3 hours per week

Honors-only enhanced interactions/recitation: 1 hour per week

2) Enhanced expectations and experiences

Because there will continue to be honor-only lab sections, and honors-only recitation, students will get ample opportunity to interact with other students pursuing the embedded option.

Additional enhancements to the honors experience will include at least two of the following:

- a. A related research project and enhanced laboratory experience. The honors course will conduct a DNA-based experiment which will involve DNA extraction, PCR, and electrophoresis. Most of the work will be conducted during the additional hour of classtime, but students may have to visit the experiment for brief periods outside of class.
- b. Develop a teaching tool related to the course. The students will brainstorm and develop teaching tools to give in-depth coverage of course material during the additional hour of instruction. They will vote on which teaching tool is the best. The teaching tool that was the best will then be presented to the embedded lecture, and the honors students will guide the other students. These activities will be used as review material before exams.
- c. Field trip to a research facility, prominently known guest speaker, or regional conference.
- d. Additional readings from the scholarly literature to enhance content. Students will be in charge of picking a manuscript and leading the discussion of the manuscript.
- e. Debate. Students may gather information and debate one or both sides of a topic, such as whether genetic experiments should be conducted on human subjects, the best way to combat global climate change, or whether hunting of bison and wolves should be allowed in Yellowstone.

3) A description of the grading

The same amount of points will be awarded for all material that is completed by both honors and non-honors students. Additional points will be awarded based on the additional work that is required. The embedded honors students grade will be awarded base on the number of points earned compared to the total number of points that were available. See the attached syllabi for additional details.

4) Place in the curriculum

This course is the first course for biology majors, and is required. It can also be used as a GE science course. It holds the same place in the curriculum map as BIO 1113 and 1114.

5)	Attached syllabi.		

The syllabus for the regular courses (BIO 1113 and BIO 1114) and the honors embedded addendum.

FORM, FUNCTION, DIVERSITY AND ECOLOGY – BIO 1114 Spring 2016

DR. RYAN W. NORRIS

Office: Science 334 Phone: 419-890-8360 Email: norris.667@osu.edu

Office Hours: M 1:20-2:20, F 1:20-2:20 or by appointment.

COURSE FORMAT:

BIO 114 consists of three 1-hour lectures and one 3-hour lab. Lectures will provide an introduction to the topic of interest. Labs provide hands-on experiences to develop quantitative and critical thinking skills.

<u>Lecture:</u> MWF 12:20 PM - 1:15 PM in LL170 <u>Lab:</u> W or F 8:00 AM - 11:00 AM in LL370

REQUIRED TEXT:

Reece, J. B. et al. 2014. Campbell Biology, 10th Edition. Pearson Benjamin Cummings, San Franciso, CA. ISBN-10: 0321775651 • ISBN-13: 9780321775658

COURSE OBJECTIVE:

This course is the second introductory biology course for biology majors. Students should enroll in lecture and lab concurrently. This course is designed to introduce the student to evolution, diversity of structure, function, behavior and ecology among prokaryotes and eukaryotes. The course focuses on appreciating the evolution of the diversity of life as well as the relationships among organisms and their environment.

It is hoped that by gaining a better understanding of the biological richness of this planet, you will better appreciate each organism's role in the environment. Furthermore, such understanding is absolutely crucial for tackling the environmental issues that threaten this diversity and have contributed to the current global 'biodiversity crisis', in which species are going extinct at an alarming rate. We cannot assess the magnitude of this loss, nor hope to save our dwindling biological resources unless we know what biodiversity currently exists on this planet.

The specific objectives for this course include:

- 1.) Learn biological diversity and the relatedness among organisms
- 2.) Describe how organisms interact with their environment
- 3.) Gain scientific literacy by reading scientific articles
- 4.) Learn quantitative skills used to analyze and interpret biological information
- 5.) Discover how humans affect their environment, and the importance of the environment for human welfare

How students meet the GEC objectives through this course

In Biology 1114, majors in the biological sciences meet the GEC Natural Science Learning Objectives in multiple ways. The course is an in-depth study of the laws, structures, and interrelationships within the biological universe. Students gain an understanding of the foundations of modern biology by studying organismal diversity, ecological relationships within and among species, behavior, and the evolutionary and ecological constraints placed upon form and function, with particular emphasis on plants and animals. In the laboratory activities, students not only reinforce the biological concepts introduced in lecture, but also learn scientific reasoning and methods. By studying the history of and key discoveries in biology, students learn the interrelationship between technology and scientific methods and the social and philosophical ramifications of biological insights and discoveries.

LEARNING OUTCOMES:

These are guidelines to where students should focus their learning in each of the four main topics covered in Biology 1114.

Successful students will be able to:

- 1. Evolution
 - a) Explain the mechanisms of microevolution.
 - b) Use concepts associated with microevolution and macroevolution to explain patterns of speciation and extinction
 - c) Explain mechanisms of sexual selection and the evolution of social behavior.
 - d) Describe methods used to infer evolutionary relationships.
 - e) Explain the relationship between evolutionary hypotheses and the biological classification system.
 - f) Use the geologic time scale to identify when major biological evolutionary events occurred.
- 2. Diversity of life
 - a) Characterize the biological domains and kingdoms.
 - b) Describe the major features of and evolutionary relationships within the Kingdoms Fungi, Plantae, and Animalia.
 - c) Describe the major groups of animals in terms of their body plan, embryology, and symmetry.
- 3. Ecology and climate change
 - a) Explain ecological phenomena related to populations and communities in terms of basic mathematical models.
 - b) Trace chemicals and energy through an ecosystem to explain human and global impacts of perturbations.
 - c) Describe the interrelationship between biodiversity and community interactions, such as such as predation, competition, and symbiosis.
 - d) Understand the scientific evidence for climate change.
- 4. Increased scientific literacy and ability to use online search engines to explore primary scientific literature. Improve writing skills and ability to summarize scientific research.

GRADING POLICY:

Lecture and laboratory sections are graded together. Course grades will be based upon the percentage of total points that the student accumulates from assignments. The course grade will be determined as follows:

Exam 1	100 points
Exam 2	100 points
Exam 3	100 points
Final Exam	150 points
Quizzes and Laboratory Assignments (lowest is dro	opped, 15 total)
(10 pts each x 14)	140 points
Lab write-ups (25 pts each x 4)	100 points
Lab practical	50 points
Article summaries (15 pts each x 4)	60 points
Attendance and Discussion	50 points
Total	750 points

The distribution for a letter grade is based upon the following standard OSU grading scale:

93 - 100 (A); 90 - 92.9 (A-); 87 - 89.9 (B+); 83 - 86.9 (B); 80 - 82.9 (B-); 77 - 79.9 (C+);

73 - 76.9 (C); 70 - 72.9; (C-); 67 - 69.9 (D+); 60 - 66.9 (D); Below 60 (E).

EXAMS:

Exams will cover all assigned reading material, assignments, and information given during lecture. The exam will consist of multiple choice, true/false, short answer, and long answer. The Final Exam will include a comprehensive component.

MISSED EXAMS:

If you know in advance that you will not be present during a scheduled exam, please contact me to set up an alternate time *before* the scheduled exam. If you are ill or there is some other emergency the day of the exam, I MUST be notified the day of the exam and provided documentation to support the reason for your absence within one week. Make-up exams will be different from the regular exam and may not follow the same format.

If you miss lab, you will receive a zero for all work unless you contact me with a university excused absence. Written assignments are due at the beginning of class on the due date. Late work may be accepted on a case-by-case basis, but when it is accepted you will be penalized 10% a day (the first 10% is deducted if you fail to turn it in at the beginning of class).

GENERAL EXPECTATIONS AND ATTENDANCE:

Students are responsible for all information given during class whether the student is in attendance or not. Students who miss class are responsible for getting missed material including handouts from classmates. I strongly suggest that you read the relevant chapters before we are scheduled to cover them in lecture. Attendance in labs is particularly critical. Labs require special setup that can often not be done outside of regular class time. If you must be absent in lab, please try to attend the other lab section offered that week if at all possible.

Note on extended absences: If you must miss more than two classes due to extended illness, you need to show me a doctor's excuse. Please submit the form at http://www.shc.ohio-state.edu/posts/documents/absence-excuse-form.pdf. THE STUDENT MUST SUBMIT THIS FORM WITHIN 48 HOURS OF THE SECOND MISSED CLASS (submission via email preferred).

LAB SAFETY:

Eating, drinking, and the use of cell phones (including text messaging) are prohibited in the lab room.

ACADEMIC HONESTY:

OSU's University Code of Student Conduct will be strictly enforced. Copying information (directly or indirectly) from other students and not giving credit to authors for information used in a paper are all considered acts of dishonesty and will be reported to the OSU Committee on Academic Misconduct (COAM) in Columbus. The COAM will determine the appropriate penalty which may include loss of points for that assignment, a failing grade in the class, or expulsion from the University. Cheating during an exam includes providing answers for another student or receiving answers from another student. Plagiarism is also a serious academic offense. Never copy use someone else's ideas or writing without properly citing that source. Please familiarize yourself with the University Code of Student Conduct and COAM at:

http://oaa.osu.edu/coam/home.html

http://oaa.osu.edu/coam/faq.html#whatisacademicmisconduct

ACCOMMODATIONS FOR DISABILITIES:

The Americans with Disabilities Act of 1990 (ADA) provides protection from illegal discrimination for qualified individuals with disabilities. Students requesting instructional accommodations due to disabilities must arrange for such accommodations by contacting Karen Meyer in the Office for Disability Services. She can be reached at 148 Public Services Building, by phone 419-995-8453, or by email meyer.193@osu.edu. Presenting documentation of a student's disability early (before the beginning of classes) is helpful and often necessary to secure needed materials in a timely way. Accommodations should be requested a week PRIOR to affected due dates or exams.

COUNSELING SERVICES:

If you are experiencing personal difficulties, whether related to class or not, you have access to the services provided by the OSU Lima Counseling & Consultation Services. All current OSU students are eligible for services at no charge. Please contact LCCS at 419-995-8272 or 419-995-8698.

STUDENT ADVOCACY:

If you are experiencing difficulties navigating the campus experience, you have access to the services provided by the OSU Lima Student Advocacy Center. The Center will help with financial distress, cut through red tape, familiarize students with university policies and procedures, and link students to appropriate resources. All current OSU students are eligible for services at no charge. Please contact Gail Nelson at 419-995-8698 or nelson.700@osu.edu.

STATEMENT ON DIVERSITY:

The instructor of this course is committed to promoting a welcoming climate for all students. For more information on diversity, see the EEOB (http://excelsior.biosci.ohio-state.edu/~eeob/drupal/?q=diversity) or OSU (http://www.osu.edu/diversity/) websites. The instructor welcomes suggestions, questions, and comments. Any exchange of ideas will be conducted with confidentiality, safety, and respect as guiding principles.

Schedule subject to change, but exams and due dates are unlikely to change.

Week	Monday	Wednesday	Friday	Lab
1 – Jan 11	Introduction	Evolution: Descent with modification Chapter 22	Evolution: Descent with modification	Lab 1 Sci Method I
2 – Jan 18	No Class – MLK Day	Evolution of Populations <i>Chapter 23</i>	Evolution of Populations	Lab 2 Sci Method II
3 – Jan 25	Evolution: speciation Chapter 24	Evolution: speciation	Evolution: History of Life <i>Chapter 25</i>	Lab 3 Hardy- Weinberg
4 – Feb 1	Evolution: History of Life	Special Topic: Evolution	Exam 1: Evolution	Lab 4 Hominid Evolution
5 – Feb 8	Organismal diversity: Phylogenetics & Tree of Life Chapter 26	Organismal diversity: Phylogenetics & Tree of Life	Organismal diversity: Viruses & Prokaryotes Chapters 19 & 27	Lab 5 Systematics
6 – Feb 15	Organismal diversity: Prokaryotes Chapter 27	Organismal diversity: Protists Chapter 28	Organismal diversity: Plants Chapter 29	Lab 6 Prokaryotes & Protists
7 – Feb 22	Organismal diversity: Plants	Organismal diversity: Plants Chapter 30	Organismal diversity: Plants	Lab 7 Plants
8 – Feb 29	Plant Form & Function <i>Chapter 35</i>	Special Topic: Biodiversity I	Exam 2: Organismal diversity I	Lab 8 Behavior
9 – Mar 7	Organismal diversity: Fungi	Organismal diversity: Invertebrates Chapter 32	Organismal diversity: Invertebrates	Lab 9 Fungi & Invertebrates
10 – Mar 14	Spring break- No class			
11 – Mar 21	Organismal diversity: Vertebrates Chapter 33	Organismal diversity: Vertebrates	Organismal diversity: Vertebrates	Lab 10 Vertebrates
12 – Mar 28	Animal Form and Function <i>Chapter 40</i>	Special Topic: Biodiversity II	Exam 3: Organismal diversity II	Lab 11 Ohio Biodiversity
13 – April 4	Ecology: Biosphere <i>Chapter 52</i>	Ecology: Biosphere	Ecology: Populations <i>Chapter 53</i>	Lab Practical
14 – April 11	Ecology: Populations	Ecology: Communities <i>Chapter 54</i>	Ecology: Communities	Lab 12 Ecology I
15 – April 18	Ecology: Ecosystems Chapter 55	Ecology: Ecosystems Chapter 56	Ecology: Conservation	Lab 13 Ecology II
16 – April 25	Special Topic: Ecology			
Final Exam	Wednesday April 27 1	2:00 – 1:45 pm.		

FORM, FUNCTION, DIVERSITY AND ECOLOGY – BIO 1114E AUTUMN 2017

DR. RYAN W. NORRIS

Office: Science 334 Phone: 419-890-8360 Email: norris.667@osu.edu

Office Hours: M 1:20-2:20, F 1:20-2:20 or by appointment.

COURSE FORMAT:

BIO 114 consists of three 1-hour lectures and one 3-hour lab. Lectures will provide an introduction to the topic of interest. Labs provide hands-on experiences to develop quantitative and critical thinking skills.

<u>Lecture:</u> MWF 12:20 PM - 1:15 PM in LL170 <u>Lab:</u> W or F 8:00 AM - 11:00 AM in LL370

REQUIRED TEXT:

Reece, J. B. et al. 2014. Campbell Biology, 10th Edition. Pearson Benjamin Cummings, San Franciso, CA. ISBN-10: 0321775651 • ISBN-13: 9780321775658

COURSE OBJECTIVE:

This course is the second introductory biology course for biology majors. Students should enroll in lecture and lab concurrently. This course is designed to introduce the student to evolution, diversity of structure, function, behavior and ecology among prokaryotes and eukaryotes. The course focuses on appreciating the evolution of the diversity of life as well as the relationships among organisms and their environment.

It is hoped that by gaining a better understanding of the biological richness of this planet, you will better appreciate each organism's role in the environment. Furthermore, such understanding is absolutely crucial for tackling the environmental issues that threaten this diversity and have contributed to the current global 'biodiversity crisis', in which species are going extinct at an alarming rate. We cannot assess the magnitude of this loss, nor hope to save our dwindling biological resources unless we know what biodiversity currently exists on this planet.

The specific objectives for this course include:

- 1.) Learn biological diversity and the relatedness among organisms
- 2.) Describe how organisms interact with their environment
- 3.) Gain scientific literacy by reading scientific articles
- 4.) Learn quantitative skills used to analyze and interpret biological information
- 5.) Discover how humans affect their environment, and the importance of the environment for human welfare

How students meet the GEC objectives through this course

In Biology 1114, majors in the biological sciences meet the GEC Natural Science Learning Objectives in multiple ways. The course is an in-depth study of the laws, structures, and interrelationships within the biological universe. Students gain an understanding of the foundations of modern biology by studying organismal diversity, ecological relationships within and among species, behavior, and the evolutionary and ecological constraints placed upon form and function, with particular emphasis on plants and animals. In the laboratory activities, students not only reinforce the biological concepts introduced in lecture, but also learn scientific reasoning and methods. By studying the history of and key discoveries in biology, students learn the interrelationship between technology and scientific methods and the social and philosophical ramifications of biological insights and discoveries.

LEARNING OUTCOMES:

These are guidelines to where students should focus their learning in each of the four main topics covered in Biology 1114.

Successful students will be able to:

- 1. Evolution
 - a) Explain the mechanisms of microevolution.
 - b) Use concepts associated with microevolution and macroevolution to explain patterns of speciation and extinction
 - c) Explain mechanisms of sexual selection and the evolution of social behavior.
 - d) Describe methods used to infer evolutionary relationships.
 - e) Explain the relationship between evolutionary hypotheses and the biological classification system.
 - f) Use the geologic time scale to identify when major biological evolutionary events occurred.
- 2. Diversity of life
 - a) Characterize the biological domains and kingdoms.
 - b) Describe the major features of and evolutionary relationships within the Kingdoms Fungi, Plantae, and Animalia.
 - c) Describe the major groups of animals in terms of their body plan, embryology, and symmetry.
- 3. Ecology and climate change
 - a) Explain ecological phenomena related to populations and communities in terms of basic mathematical models.
 - b) Trace chemicals and energy through an ecosystem to explain human and global impacts of perturbations.
 - c) Describe the interrelationship between biodiversity and community interactions, such as such as predation, competition, and symbiosis.
 - d) Understand the scientific evidence for climate change.
- 4. Increased scientific literacy and ability to use online search engines to explore primary scientific literature. Improve writing skills and ability to summarize scientific research.

GRADING POLICY:

Lecture and laboratory sections are graded together. Course grades will be based upon the percentage of total points that the student accumulates from assignments. The course grade will be determined as follows:

Exam 1	100 points
Exam 2	100 points
Exam 3	100 points
Final Exam	150 points
Quizzes and Laboratory Assignments (lowest is dropped, 1:	5 total)
(10 pts each x 14)	140 points
Lab write-ups (25 pts each x 4)	100 points
Lab practical	50 points
Article summaries (15 pts each x 4)	
Attendance and Discussion	
Honors Requirements	_
Field trip attendance and journal	20 points
Development and execution of peer-led teaching project	35 points
Wolves in Ohio Debate	10 points
DNA phylogeny experiment	35 points
Total	850 points

The distribution for a letter grade is based upon the following standard OSU grading scale:

93 - 100 (A); 90 - 92.9 (A-); 87 - 89.9 (B+); 83 - 86.9 (B); 80 - 82.9 (B-); 77 - 79.9 (C+);

73 - 76.9 (C); 70 - 72.9; (C-); 67 - 69.9 (D+); 60 - 66.9 (D); Below 60 (E).

EXAMS:

Exams will cover all assigned reading material, assignments, and information given during lecture. The exam will consist of multiple choice, true/false, short answer, and long answer. The Final Exam will include a comprehensive component.

MISSED EXAMS:

If you know in advance that you will not be present during a scheduled exam, please contact me to set up an alternate time *before* the scheduled exam. If you are ill or there is some other emergency the day of the exam, I MUST be notified the day of the exam and provided documentation to support the reason for your absence within one week. Make-up exams will be different from the regular exam and may not follow the same format.

If you miss lab, you will receive a zero for all work unless you contact me with a university excused absence. Written assignments are due at the beginning of class on the due date. Late work may be accepted on a case-by-case basis, but when it is accepted you will be penalized 10% a day (the first 10% is deducted if you fail to turn it in at the beginning of class).

GENERAL EXPECTATIONS AND ATTENDANCE:

Students are responsible for all information given during class whether the student is in attendance or not. Students who miss class are responsible for getting missed material including handouts from classmates. I strongly suggest that you read the relevant chapters before we are scheduled to cover them in lecture. Attendance in labs is particularly critical. Labs require special setup that can often not be done outside of regular class time. If you must be absent in lab, please try to attend the other lab section offered that week if at all possible.

Note on extended absences: If you must miss more than two classes due to extended illness, you need to show me a doctor's excuse. Please submit the form at http://www.shc.ohio-state.edu/posts/documents/absence-excuse-form.pdf. THE STUDENT MUST SUBMIT THIS FORM WITHIN 48 HOURS OF THE SECOND MISSED CLASS (submission via email preferred).

LAB SAFETY:

Eating, drinking, and the use of cell phones (including text messaging) are prohibited in the lab room.

ACADEMIC HONESTY:

OSU's University Code of Student Conduct will be strictly enforced. Copying information (directly or indirectly) from other students and not giving credit to authors for information used in a paper are all considered acts of dishonesty and will be reported to the OSU Committee on Academic Misconduct (COAM) in Columbus. The COAM will determine the appropriate penalty which may include loss of points for that assignment, a failing grade in the class, or expulsion from the University. Cheating during an exam includes providing answers for another student or receiving answers from another student. Plagiarism is also a serious academic offense. Never copy use someone else's ideas or writing without properly citing that source. Please familiarize yourself with the University Code of Student Conduct and COAM at:

http://oaa.osu.edu/coam/home.html

http://oaa.osu.edu/coam/faq.html#whatisacademicmisconduct

ACCOMMODATIONS FOR DISABILITIES:

The Americans with Disabilities Act of 1990 (ADA) provides protection from illegal discrimination for qualified individuals with disabilities. Students requesting instructional accommodations due to disabilities must arrange for such accommodations by contacting Karen Meyer in the Office for Disability Services. She can be reached at 148 Public Services Building, by phone 419-995-8453, or by email meyer.193@osu.edu. Presenting documentation of a student's disability early (before the beginning of classes) is helpful and often necessary to secure needed materials in a timely way. Accommodations should be requested a week PRIOR to affected due dates or exams.

COUNSELING SERVICES:

If you are experiencing personal difficulties, whether related to class or not, you have access to the services provided by the OSU Lima Counseling & Consultation Services. All current OSU students are eligible for services at no charge. Please contact LCCS at 419-995-8272 or 419-995-8698.

STUDENT ADVOCACY:

If you are experiencing difficulties navigating the campus experience, you have access to the services provided by the OSU Lima Student Advocacy Center. The Center will help with financial distress, cut through red tape, familiarize students with university policies and procedures, and link students to appropriate resources. All current OSU students are eligible for services at no charge. Please contact Gail Nelson at 419-995-8698 or nelson.700@osu.edu.

STATEMENT ON DIVERSITY:

The instructor of this course is committed to promoting a welcoming climate for all students. For more information on diversity, see the EEOB (http://excelsior.biosci.ohio-state.edu/~eeob/drupal/?q=diversity) or OSU (http://www.osu.edu/diversity/) websites. The instructor welcomes suggestions, questions, and comments. Any exchange of ideas will be conducted with confidentiality, safety, and respect as guiding principles.

SCHEDULE: Schedule subject to change, but exams and due dates are unlikely to change.

Week	Monday	Wednesday	Friday	Lab	Honors
1 –	Introduction	Evolution: Descent	Evolution: Descent	Lab 1	Group
Aug 21		with modification	with modification	Sci Method I	Icebreakers &
		Chapter 22			Intro to Peer-
		1			Led-Teaching
2 –	Evolution: Descent	Evolution of	Evolution of	Lab 2	Development of
Aug 28	with modification	Populations	Populations	Sci Method II	Peer-led
		Chapter 23			Activity
3 –	No Class –	Evolution:	Evolution: History	Lab 3	Phylogeny
Sep 4	Labor Day	speciation	of Life	Hardy-	Experiment
			Chapter 25	Weinberg	Intro
4 –	Evolution: History of	Special Topic:	Exam 1: Evolution	Lab 4	Set up
Sep 11	Life	Evolution		Hominid	phylogeny
				Evolution	experiment
5 –	Organismal diversity:	Organismal	Organismal	Lab 5	Testing of Peer-
Sep 18	Phylogenetics & Tree	diversity:	diversity: Viruses	Systematics	led Activity
	of Life	Phylogenetics &	& Prokaryotes		(Grps 1&2)
	Chapter 26	Tree of Life	Chapters 19 & 27		
6 –	Organismal diversity:	Organismal	Organismal	Lab 6	Analyzing
Sep 25	Prokaryotes	diversity: Protists	diversity: Plants	Prokaryotes	phylogenetic
	Chapter 27	Chapter 28	Chapter 29	& Protists	data
7 –	Organismal diversity:	Organismal	Organismal	Lab 7	Scientific
Oct 2	Plants	diversity: Plants	diversity: Plants	Plants	writing
		Chapter 30			
8 –	Plant Form &	Special Topic:	No Class –	Lab 8	Testing of Peer-
Oct 9	Function	Biodiversity I	Fall Break	Behavior	led Activity
	Chapter 35				(Grps 3&4)
9 –	Exam 2:	Organismal	Organismal	Lab 9	Field Trip
Oct 16	Organismal	diversity: Fungi &	diversity:	Fungi &	Preparation
	diversity I	Invertebrates	Invertebrates	Invertebrates	Phylogeny
		Chapter 32			Experiment
10				* 1.10	Report Due
10 –	Organismal diversity:	Organismal	Organismal	Lab 10	Testing of Peer-
Oct 23	Vertebrates	diversity:	diversity:	Vertebrates	led Activity
1.1	Chapter 33	Vertebrates	Vertebrates	T 1 11	(Grps 5&6)
11 –	Animal Form and	Special Topic:	No class –	Lab 11	Field Trip
Nov 6	Function	Biodiversity II	Veteran's Day	Ohio	Journal Due
10	Chapter 40	Easlass Dir. 1	Observed	Biodiversity	Tanting -CD
12 –	Exam 3:	Ecology: Biosphere	Ecology:	Lab Practical	Testing of Peer-
Nov 13	Organismal	Chapter 52	Populations		led Activity
12	diversity II	No Class	Chapter 53	Lab 12	(Grps 7&8)
13 –	Ecology: Populations	No Class –	No Class –	Lab 12	Preparation for
Nov 20		Thanksgiving Break	Thanksgiving Break	Ecology I	Debate
14 –	Ecology:	Ecology:	Ecology:	Lab 13	Wolves in Ohio
Nov 27	Ecosystems	Ecosystems	Conservation	Ecology II	Debate
	Chapter 55	Chapter 56		2,	
	•	•			
15 –	Special Topic:	Special Topic:			

Final Exam Day/Time: TBA